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Abstract. An interpretation of the Gough-Joule-Effect from an atomistic point of view is given by a
special investigation of lattice vibrations using a non-interacting model. The calculations are restricted to
crystals with ideal crystal structure built up of only one kind of particles. Approximate analytical formulas
are derived. A comparison between the classical macroscopic theory and the here presented microscopic
calculations is drawn.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 63.70.+h Statistical mechanics
of lattice vibrations and displacive phase transitions – 46.25.Hf Thermoelasticity and electromagnetic
elasticity (electroelasticity, magnetoelasticity)

1 Introduction

Thermomechanic problems are mathematically described
by two field equations, namely the mechanical and the
thermal field equation [1,2]. The mechanical field equation
results from a combination of the equation of motion and
the constitutive equation. The mechanical field equation
yields the displacement field. The thermal field equation
is derived from the balance of energy, the constitutive en-
tropy equation and Fourier’s law of heat conduction. The
thermal field equation yields the temperature field. The
mechanical and the thermal field equation are fully cou-
pled, that means in both equations occur the field vari-
ables of both field equations.

Regarding thermoelastic materials, one can detect two
coupling effects. The first effect is the the well-known ef-
fect of thermal expansion. Solid bodies respond to an in-
crease and decrease of temperature with expansion and
contraction, respectively. Due to this phenomenon, the
mechanical field equation is coupled with the thermal field
equation, hence in the mechanical field equation appears
a thermal coupling term.

The second effect describes the reversible heating or
cooling of a body by means of a deformation. If one, for
instance, transfers a body in a hydrostatic state of stress
by a reversible adiabatic change of state, the body will
cool off in the case of a tensile state of stress and will
heat up in the case of a compressive state of stress. After
unloading, the body takes up the original temperature.
The effect of reversible heating and cooling is also known
as Gough-Joule-effect [3,4]. The consequence is that the
thermal field equation is coupled with the mechanical field
equation, thus in the thermal field equation appears a
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mechanical coupling term. For most materials, the tem-
perature changes due to the Gough-Joule-effect are com-
paratively small [5]. For metals, we observe temperature
changes in the magnitude of one kelvin [6].

It remains to mention that if dissipation is taken into
account, we obtain a thermoviscoelastic material [1]. We
detect heating due to dissipation and another coupling
term in the mechanical field equation. If we further note
that the parameters are functions of the temperature,
one can perceive additional coupling effects between the
two field equations [7,8]. Discussions on the Gough-Joule-
effect in viscoelastic fluids can be found in [9]. In [10,6] in-
vestigations are carried out on nonlinear thermomechanic
problems, which also consider plasticity.

The main objective of this paper is to give an atom-
istic explanation of the mechanical coupling term in the
thermal field equation, which causes the Gough-Joule-
effect. We restrict ourselves to the most simple case that
is an ideal crystal built up of only one kind of parti-
cles (Debye solid). The microscopic explanation of the
Gough-Joule-effect for non-crystalline solids, such as poly-
mers, is probably another than that given here for crys-
tals. The microscopic explanation of the thermal expan-
sion is well known. It originates in the unsymmetry of
the potential curve and the displacement of the center
of oscillation with varying temperature [11,12]. To the
authors’ knowledge, a microscopic interpretation of the
Gough-Joule-effect does not exist in the literature. A de-
tailed description of experimental works on the Gough-
Joule-effect can be found in [13].

2 Macroscopic theory

For a comparison with the microscopic calculations in Sec-
tion 3, we first recall the macroscopic results. We consider
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an isotropic thermoelastic solid. The linearized balance
and constitutive equations are (see [14,1])
the balance of momentum

ρ u̇ =∇ · σT + ρ k (σ = σT ) , (1)

the balance of energy

ρ T ṡ = −∇ · q + ρ r , (2)

the constitutive equation

σ = 2 µ ε+ λ (ε · ·I) I− γ (T − T0) I , (3)

the constitutive entropy equation

ρ s = γ (ε · ·I) + ρ
cV
T0

(T − T0) (4)

and Fourier’s law of heat conduction

q = −κ ·∇(T − T0) . (5)

As usual, the linearized stress tensor is denoted as σ and
the linearized strain tensor as ε. ρ is the density, u̇ is the
time derivative of the displacement vector u and k collects
the volume forces. T denotes the absolute temperature, T0

terms the ambient temperature, s represents the specific
internal entropy and cV the specific heat capacity. Further,
q denotes the heat flux, r represents internal sources of
heat. κ is the coefficient of thermal conduction. The Lamé
constants µ und λ can be expressed in terms of Young’s
modulus of elasticity E, Poisson’s ratio ν and the bulk
modulus K

µ =
E

2(1 + ν)
, λ =

ν E

(1 + ν)(1− 2ν)
, K =

(3λ+ 2µ)
3

·

(6)

Assuming small changes in temperature, the relationship
between the constant γ and the linear coefficient of ther-
mal expansion α is given by

γ ≈ (3λ+ 2µ) α = 3 K α =
E

(1− 2ν)
α. (7)

Combining the balance of momentum (1) and the con-
stitutive equation (3) and taking into account the strain-
displacement relationship ε = 1

2 [(∇u)T +∇u], the me-
chanical field equation results in

µ ∇2u + (λ+ µ) ∇(∇ · u) + ρ k = ρ ü + γ ∇T . (8)

Differentiation of equation (4) with respect to t and sub-
stituting the result into the balance of energy (2), we get
with Fourier’s law of heat conduction and after a lineariza-
tion the thermal field equation

κ ∇2 · T − ρ cV Ṫ − T0 γ (ε̇ · ·I) = −ρ r . (9)

The term T0 γ (ε̇ · ·I) in equation (9) describes the re-
versible heating effect.

In order to analyze this effect, we assume, that a body
is isentropically changed from an unstressed state with the
temperature T0 in a hydrostatic state of stress and strain.
A linearized consideration according to equation (3) with a
tensile stress of σ11 = σ22 = σ33 = p leads to a volumetric
extension of

εkk =
σkk
3K

+
γ

K
(T − T0)

=
p

K
+
γ

K
(T − T0). (10)

Assuming a reversible adiabatic change of state, the en-
tropy equation (4) results in

γ εkk = −ρ cV
T0

(T − T0) (11)

and with equation (10) it reads

γ
( p
K

+
γ

K
(T − T0)

)
= −ρ cV

T0
(T − T0) . (12)

Solving this equation for (T − T0) and reminding (7), we
obtain for the difference of temperature

∆Tmakr. = (T − T0) = − p
Eα

(1−2ν) + ρcV
3αT0

· (13)

Assuming a hydrostatic state of stress with p = 200 N
mm2

and an ambient temperature of T0 = 273 K, we get with
equation (13) and the data in Appendix C the following
differences of temperature

iron:

∆Tmakr. = −0.5750 K , (14)

aluminium:

∆Tmakr. = −1.5933 K , (15)

gold:

∆Tmakr. = −0.9583 K . (16)

3 Microscopic theory

In this section, we give an atomistic explanation of the
Gough-Joule-effect. The considerations are based on in-
vestigations of lattice vibrations. We consider the most
simple case that is an ideal crystal built up of only one
kind of particles (Debye solid [15]).

The basis of the approach is a simple model of statisti-
cally independent oscillating particles. The application of
the model of statistically independent particles is a com-
mon method to reduce the complex oscillations in a solid
on the motion of a single atom. The hypothesis of indepen-
dent motion is used in several connections. For instance,
the coefficient of thermal expansion can be calculated with
a non-interacting model [11,12]. Also, approximate cal-
culations of the heat capacity using the hypothesis of
non-correlation are known (e.g. the Einstein-model [12]).
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Fig. 1. Potential curve W (r).

Moreover, the model of independent atomic motions is
applied in the theory of diffraction [16]. For instance, the
theory of Bragg scattering is essentially the same for an
interacting and a non-interacting model.

The Gough-Joule-effect (strain or stress induces a tem-
perature change) can be regarded as the inverse effect of
the thermal expansion (temperature change induces strain
or stress). Since the model of statistically independent par-
ticles is used for an approximate calculation of the thermal
expansion, it seems likely that this model can also be used
to analyse the Gough-Joule-effect. The main objective of
the below investigation is to illustrate the Gough-Joule-
effect in a simple model. Based on the authors judgment, a
more detailed analysis, which takes phonons into account,
leads to very sophisticated calculations.

The particles of the crystal are assumed to be oscil-
lating point masses, rotatory degrees of freedom are ne-
glected. The calculations are carried out classically, that
means we presume that the temperature of the crystal is
much higher than the Debye temperature.

The particles of the crystal oscillate in a potential field
which has its origin in the attraction and repulsion forces
of the particles. Figure 1 shows a typical graph of such a
potential curve. r0 is the distance of equilibrium, W (r0) =
W0 is the lattice binding energy.

By reason of the theorem of the equipartition of energy,
in the state of thermal equilibrium the oscillating particle
has as much kinetic as potential energy. Since we neglect
rotatory degrees of freedom, the particle has 6 degrees of
freedom, 3 kinetic and 3 potential degrees of freedom. In
the state of thermal equilibrium each degree of freedom
has the same mean energy 1

2 k T0 (T0 is the temperature
of the crystal and k is Boltzmann’s constant). Hence, at
a temperature of T0, the particle has the kinetic energy
E0 = 3

2 k T0 and consequently oscillates in a height of E0

over the bottom (minimum) of the potential curve.
Because of the unsymmetry of the potential curve, the

center of oscillation of the free oscillation for the parti-
cle lies right of the minimum of the potential curve. The
higher the temperature, the larger the distance between

the center of oscillation and the minimum of the poten-
tial curve. The consequence is the thermal expansion. If
we assume a moderate ambient temperature, the particle
oscillates in a low height over the bottom of the potential
curve. Therefore, the potential curve near by the minimum
is approximated by a polynomial of degree 3

W (r) = W0 +
1
2
W ′′0 (r − r0)2 − 1

6
W ′′′0 (r − r0)3 . (17)

Defining the zero level so that W (r) → 0 for r →∞, the
constant W0 is assumed to be negative. By reason of the
typical unsymmetric graph of the potential, the constants
W ′′0 and W ′′′0 are both assumed to be positive [12]. The it-
erative determination of these constants from macroscopic
data is shown next. As mentioned before, at a constant
temperature T0, the particle performes a free oscillation
at a height of E0 = 3

2 k T0 over the bottom of the poten-
tial curve. The energy equation for this free oscillation is
given by

1
2
mA ṙ2 + (W (r) −W0) = E0 . (18)

Let a, b and c (a > b > c) be the roots of the polynomial
(W (r)−W0)−E0. If E0 is not too large, this polynomial
has three real roots. Note that for larger values of E0, the
approximation of the potential curve by a polynomial of
degree 3 is no longer valid and the roots became complex.
Consequently, we have (W (r) − W0) − E0 = 1

6W
′′′
0 (r −

a)(r− b)(r− c). By separation, we get from equation (18)

dt =
√
mA

2
1√

E0 − (W (r) −W0)
dr . (19)

Thus, the half period time T̄ (time from c to b) of the
oscillation is given by

T̄ =

√
3 mA

W ′′′0

b∫
c

1√
(r − a)(r − b)(r − c)

dr

=

√
3 mA

W ′′′0

2√
a− c

F (1,

√
b− c
a− c) . (20)

F (p, q) denotes the elliptic integral of the first kind. The
center of oscillation is determined by

rm =
1
T̄

T̄∫
0

r(t) dt =
1
T̄

b∫
c

r

ṙ
dr . (21)

With the potential function (17), one gets

rm =
1
T̄

√
3 mA

W ′′′0

b∫
c

r√
(r − a)(r − b)(r − c)

dr

= a−
E(1,

√
b−c
a−c)

F (1,
√

b−c
a−c )

(a− c) . (22)
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Fig. 2. Jump force dF .

E(p, q) represents the elliptic integral of the second kind.
So, for the ideal lattice the coefficient of thermal expansion
is found to be

α =
(rm − r0)
r0 T0

· (23)

Young’s modulus E is associated with the curvature of the
potential curve at the minimum. For the idealized crystal,
one gets [11]

d2W

dr2

∣∣∣∣∣
r=r0

= W ′′0 = E r0 . (24)

Knowing the macroscopic data α and E, the constant
W ′′0 is determined by equation (24) and W ′′′0 can be calcu-
lated iteratively using equation (23). An initial value for
the iteration of W ′′′0 is given by the approximate formula
(see [12])

W ′′′0 ≈
4
3
W ′′0

2
α r0
k

· (25)

Now, the Gough-Joule-effect is analyzed. The crystal
has to be transfered in a hydrostatic state of stress by a
reversible adiabatic change of state. Since the change of
state is reversible adiabatic, the hydrostatic force F has
to be applied infinitely slow. Therefore, we apply a series
of differential jump forces (step loads) dF (see Fig. 2).

We consider a crystal on which surfaces a differential
tensile stress dp acts so that the crystal is in a hydrostatic
state of stress. On each particle which takes the area r2

0,
there acts the differential force dF = dp r2

0. The potential
function of the tensile force dF is approximately linear
(see Appendix B)

Udp(r) = −dp r2
0 r . (26)

After applying the force dF , the particle oscillates in
the potential field W (r) + Udp(r) given by

Wdp(r) = W0 +
1
2
W ′′0 (r− r0)2 − 1

6
W ′′′0 (r− r0)3 − dp r2

0 r.

(27)

The graph of the function Wdp(r) is shown in Figure 3.
We now investigate the effect on the oscillating particle
if a differential jump force dF is applied. The solid line
in Figure 4 shows the potential curve W (r), the dashed

r

r0,dp

W (r)dp

0,dpW (r )dp

Fig. 3. Potential curve Wdp(r).

Ekin,1

E0

E1

r1

Fig. 4. Jump force in the range r0 < r1 < b.

line the potential curve Wdp(r). The figure only shows the
zone near the minima of the potential curves. Before the
jump force dF acts, the particle oscillates in the potential
field W (r) in the height of E0 over the minimum of the
potential curve. First we assume that directly before dF
acts, the particle is in the range r0 < r1 < b, that means
right of the minimum of the potential curve. Applying a
jump force implies that the acceleration jumps and the
velocity shows a discontinuity. Hence, directly after dF
has being applied, the particle rests at the same place r1
and has the same velocity ṙ(r1), but now it oscillates in the
potential field Wdp. Before the jump force dF was applied,
the particle oscillated in the height E0 over the bottom of
the potential curve W (r), but after the jump force dF
has being applied, the particle oscillates in the height E1

over the bottom of the potential curve Wdp. It is easy to
construct the new height E1. Because the velocity remains
unchanged, the new height is obtained by fixing the line
Ekin,1 = 1

2 mA ṙ
2(r1) = E0−|W0−W (r1)| over the curve

Wdp at r1. It can be seen that the new height E1 is lower
than the old one, E0. As a result, the temperature (the
kinetic energy of the particle) decreases, if the jump force
is applied, when the particle is in the range r0 < r1 < b.
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Ekin,2

E0

E2

r2

Fig. 5. Jump force in the range c < r2 < r0.

Next, we consider the case, that the particle is in
the range c < r2 < r0, i.e., left of the minimum of
the potential function when the differential jump force
dF is applied. Figure 5 illustrates the situation. Once
again, the particle keeps the position (r2) and the ve-
locity (ṙ(r2)) immediately after the jump force has been
applied. The new height E2 after the jump force dF is
applied is constructed in the same way as before. At the
point (r2,Wdp(r2)) of the potential function Wdp(r) the
line Ekin,2 = 1

2 mA ṙ2(r2) = E0−|W0−W (r2)| is fixed as
shown in the figure. One can observe that the new height
E2 is larger than the old one, E0. Consequently, the tem-
perature will increase if the jump force is applied and the
particle is in the range c < r2 < r0. Recapitulating, the en-
ergy and therefore the temperature will decrease if the
jump force is applied and the particle is right of the mini-
mum of the potential curve. Energy and temperature will
increase if the jump force is applied and the particle is
left of the minimum. By reason of the unsymmetry of the
potential curve W (r) at a fixed point of time, there are
statistically more particles of the crystal right of the mini-
mum of the potential curve than left of it. Thus, applying
a tensile hydrostatic state of stress, the temperature of
the crystal will decrease. Analogous considerations for the
case of a compressive hydrostatic state of stress can be
carried out. Then, the temperature of the crystal will in-
crease as predicted by the macroscopic theory.

We now quantify the above considerations. First, we
calculate the change of the minimum of the potential curve
due to the potential Udp, i.e., we have to calculate the
difference of the minimum of W (r) and the minimum of
Wdp(r). The position r0,dp of the minimum of Wdp(r) is

r0,dp − r0 =
W ′′0
W ′′′0

− W ′′0
W ′′′0

√
1− 2

W ′′′0

W ′′0
2 r2

0 dp

=
1
W ′′0

r2
0 dp+O(dp2) (28)

and the minimum is found to be

Wdp(r0,dp) = W0 +
1
2
W ′′0

[
1
W ′′0

r2
0 dp+O(dp2)

]2

− 1
6
W ′′′0

[
1
W ′′0

r2
0 dp+O(dp2)

]3

− dp r2
0

[
1
W ′′0

r2
0 dp+O(dp2) + r0

]
= W0 − r3

0 dp+O(dp2) . (29)

The difference of energy, that is the difference of the height
of the free oscillation over the bottom of the potential
curve before and after applying the jump force dF , can
be calculated as a function of r

dE(r) = Wdp(r)−W (r) − (Wdp(r0,dp)−W0)

= −r2
0 dp (r − r0) (30)

where c < r < b. dE(r) is the difference of energy if the
oscillating particle is at the place r when the jump force
dF is applied. At an instance of time, there are not all
particles of the crystal at the same place r. Thus, we have
to average and calculate the mean value dE of the differ-
ence of energy. In our simple model we assume that the
particles oscillate in the same mean height over the bot-
tom of the potential curve. Regarding all particles of the
crystal, there are statistically

ρs =
dt
T̄

=
1
T̄

dr
ṙ(r)

(31)

in the range [r, r + dr]. Hence, the resultant differential
difference of energy, when dF is applied, can be calculated
by weighting with ρs and integrating as

dE =
1
T̄

b∫
c

dE(r)
ṙ(r)

dr = − 1
T̄
r2
0 dp

b∫
c

(r − r0)
ṙ(r)

dr .

(32)

With ṙ from equation (18), we get

dE = − 1
T̄
r2
0 dp

√
3 mA

W ′′′0

×
b∫
c

(r − r0)√
(r − a)(r − b)(r − c)

dr

= −r2
0

a− r0 − E(1,
√

b−c
a−c)

F (1,
√

b−c
a−c )

(a− c)

dp . (33)

Equation (33) is the formula for the differential differ-
ence of energy when the initial state is stress-free. The
general expression for the differential difference of energy,
when the initial state is not stress-free, is carried out in
Appendix A.
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Applying the total load p, one has to note that the
roots a, b and c as well as the position of the minimum of
the potential curve are functions of p. Because of this fact,
an analytical integration of equation (33) or the general
expression (A.6) in Appendix A is not possible. Further-
more, equation (33) is not the exact expression for the
differential difference of energy. Due to the fact, that not
all particles of the crystal have the same temperature T0

(T0 is only the mean temperature), we would have to av-
erage over the temperature. This is also analytically not
possible, but numerical calculations show that such an av-
erage determination has only little influence on the results.
An approximate expression according to equation (33) is
given by

∆E ≈ −r2
0

a− r0 − E(1,
√

b−c
a−c)

F (1,
√

b−c
a−c )

(a− c)

 p . (34)

This formula was obtained under the assumption that the
roots a, b and c are constant. This is not true. If the
load p is applied, the particle oscillates in the potential
Wp(r). Consequently, the roots a, b and c are functions
of p. A more detailed analysis, which takes into account
this fact is carried out in Appendix A. The result is equa-
tion (A.7), which cannot be integrated analytically. Some
numerical calculations of the difference of energy ∆E ac-
cording to equation (A.7) show, that the results obtained
by equation (A.7) are close to the results given by equa-
tion (34). The reason therefore is that a, b and c change
little when p is applied. Thus, in the following we only use
formula (34).

With equation (34) and with ∆E = 3
2 k ∆T , the

temperature difference is found to be

∆Tmikr. = (T − T0) ≈ 2 ∆E
3 k

= −2 r2
0 p

3 k

×

a− E(1,
√

b−c
a−c)

F (1,
√

b−c
a−c )

(a− c)

 . (35)

Assuming a hydrostatic state of stress with p = 200 N
mm2

and an ambient temperature of T0 = 273 K, we get with
equation (35) and the data in Appendix C the following
differences of temperature

iron:

∆Tmikr. = −0.5307 K , (36)

aluminium:

∆Tmikr. = −1.5548 K , (37)

gold:

∆Tmikr. = −0.9602 K . (38)

4 Conclusion

Comparing the calculations of Sections 2 and 3, one can
observe that the macroscopic and the above presented mi-
croscopic results show close agreement. The percentage
error is

for iron:

(∆Tmakr. −∆Tmikr.)
∆Tmakr.

× 100 = 7.7 % , (39)

for aluminium:

(∆Tmakr. −∆Tmikr.)
∆Tmakr.

× 100 = 2.4 % , (40)

and for gold:

(∆Tmakr. −∆Tmikr.)
∆Tmakr.

× 100 = −0.2 % . (41)

We only examined the probably simplest case, an ideal
crystal with one kind of particles. The investigations are
based on a simple model of statistically independent os-
cillating particles. Since the results of the macroscopic
theory and the presented microscopic considerations are
pretty close, the non-interacting model is adequate to de-
scribe the Gough-Joule-effect qualitatively and quantita-
tively. A more exact model, which takes phonons into ac-
count, would be preferable, but then, the calculations are
much more complicated.

Calculations for crystals which do not consist only of
one kind of particles (e.g. sodium chloride), should be
possible to be carried out in a similar way as shown in
Section 3. But then, additional average determinations
will be necessary. For non-crystalline solids, the situa-
tion is more complicated. Perhaps, the main cause for the
Gough-Joule-effect for non-crystalline solids is another one
than that presented here for ideal crystals.

Appendix A

In Section 3 we only derived the linearized expression for
the difference of energy. Equation (30) yields the differen-
tial difference of energy dE due to the differential jump
force dF when the initial state is unstressed (p = 0). Gen-
erally, dE is not only a function of r but also a function
of p. With analogous considerations which led to equa-
tion (30), we find the general expression (see Fig. 6)

dE(r, p) = Wp(r, p+ dp)−Wp(r, p)

− ∂Wp(r0,p, p)
∂p

dp

=
∂Wp(r, p)

∂p
dp− ∂Wp(r0,p, p)

∂p
dp , (A.1)

where

Wp(r, p) = W0 +
1
2
W ′′0 (r − r0)2

− 1
6
W ′′′0 (r − r0)3 − p r2

0 r (A.2)
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W (r, p+dp)p

W (r, p)p

r

dp
W (r , p)p 0,p

p

Fig. 6. Potential curves Wp(r, p+ dp) and Wp(r, p).

and

Wp(r0,p, p) = W0 +
1
2
W ′′0 (r0,p − r0)2

− 1
6
W ′′′0 (r0,p − r0)3 − p r2

0 r0,p . (A.3)

In equation (A.1) the term Wp(r, p+ dp)−Wp(r, p) rep-
resents the difference between the curves Wp(r, p + dp)
and Wp(r, p) for a fixed r. The term ∂Wp(r0,p,p)

∂p dp is the
difference between the minimum of Wp(r, p+ dp) and the
minimum of Wp(r, p).

The position of the minimum r0,p of the potential curve
Wp is given by

r0,p − r0 =
W ′′0
W ′′′0

− W ′′0
W ′′′0

√
1− 2

W ′′′0

W ′′0
2 r2

0 p . (A.4)

Substituting equation (A.4) into (A.3) and differentiating
with respect to p leads to

∂Wp(r0,p, p)
∂p

=
r2
0 W

′′
0

W ′′′0

×

 1√
1− 2 W ′′′0

W ′′0
2 r2

0 p
− 1


×
[

1−
√

1− 2
W ′′′0

W ′′0
2 r2

0 p

]

− r2
0 W

′′
0

2 W ′′′0

√
1− 2 W ′′′0

W ′′0
2 r2

0 p

×
[

1−
√

1− 2
W ′′′0

W ′′0
2 r2

0 p

]2

− r4
0 p

W ′′0

√
1− 2 W ′′′0

W ′′0
2 r2

0 p
− r3

0 .

(A.5)

F

m i

m i

x i

Fig. 7. 1D array of springs.

Thus, weighting according to (32), the differential differ-
ence of energy is found to be

dE =
1

T̄ (p)

b∫
c

dE(r, p)
ṙ(r, p)

dr . (A.6)

Note, if we apply the load p, the form of the potential
curve and therefore the position of the roots a, b and c will
change. Hence, a, b and c are functions of p. Moreover, the
velocity ṙ and T̄ are functions of p. The general expression
for the difference of energy due to applying the load p is
given by

∆E =

p∫
0

1
T̄ (p)

b(p)∫
c(p)

1
ṙ(r, p)

×
(
∂Wp(r, p)

∂p
− ∂Wp(r0,p, p)

∂p

)
dr dp . (A.7)

This integral can not be solved analytically. For p = 0,
equation (A.1) leads to equation (30) and equation (A.6)
leads to equation (33). Strictly speaking, equation (A.7)
is not the exact expression for the energy difference since
not all particles have the same mean temperature. Further
average calculations would have to be carried out.

Appendix B

The calculations in Section 3 are based on the model of
statistically independent oscillating particles. Due to this
hypothesis, the hydrostatic force dF can approximatively
be taken into account by a linear potential (see Eq. (26)).
Also, the same approach is applied in the determina-
tion of the modulus of elasticity with the non-interacting
model [11].

Why a hydrostatic force gives (approximatively) rise
to a linear potential can be illustrated by a simple 1D
spring model (see Fig. 7). The particles mi are connected
with linear springs (spring constant c). The position of the
particles is determined by the coordinates xi. If a constant
force F is applied at the right end of the array, the particles
take a new position of equilibrium characterized by the
coordinates x̄i.

According to the non-interacting model, we fix all par-
ticles except the particlemi. On this particle acts the force
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m
i

Fi Fi+1

Fig. 8. Forces acting upon particle mi.

Fi = c (xi − x̄i−1) due to the left spring and the force
Fi+1 = c (x̄i+1 − xi) due to the right spring (Fig. 8), so
that the resultant force is given by FR = −2 c xi+c (x̄i−1+
x̄i+1). Since x̄i−1 and x̄i+1 are constants, the potential of
FR is given by WR = c x2

i − c (x̄i−1 + x̄i+1) xi.
Assuming linear springs, the applied force F causes

a linear potential. If the springs are nonlinear according
to equation (17), there appear additional quadratic and
cubic terms in the potential. Further investigations with
the data in Appendix C show that these terms are much
more smaller than the linear term so that they can be
neglected.

Since an array of springs is related to an interacting
model, the above considerations cannot be entirely consis-
tent with the non-interacting model. But they are useful
to demonstrate that there approximatively occurs a linear
potential due to a constant hydrostatic force.

Appendix C

The data used in the previous sections are itemized
below. The data are taken from [17].

Fe
distance of equilibrium r0 [Å]: 2.5
coefficient of thermal expansion α [106 1

K ]: 12
Young’s modulus E [1010 N

m2 ]: 16.83
specific heat capacity cV [ J

kg K ]: 460
Poisson’s ratio ν: 0.28
density ρ [103 kg

m3 ]: 7.87
atomic mass mA [1.66× 10−27kg]: 55.85

Al
distance of equilibrium r0 [Å]: 2.88
coefficient of thermal expansion α [106 1

K ]: 23.8
Young’s modulus E [1010 N

m2 ]: 7.22
specific heat capacity cV [ J

kg K ]: 945
Poisson’s ratio ν: 0.34
density ρ [103 kg

m3 ]: 2.66
atomic mass mA [1.66× 10−27kg]: 26.98

Au
distance of equilibrium r0 [Å]: 2.88
coefficient of thermal expansion α [106 1

K ]: 14.2
Young’s modulus E [1010 N

m2 ]: 8
specific heat capacity cV [ J

kg K ]: 130
Poisson’s ratio ν: 0.424
density ρ [103 kg

m3 ]: 19.32
atomic mass mA [1.66× 10−27kg]: 196.97.

With these data, we get the following values for the
constants W ′′0 and W ′′′0 .

iron aluminium gold
W ′′0 [ N

m ]: 42.075 20.794 23.04
W ′′′0 [1012 N

m2 ]: 0.5074 0.2694 0.2074.
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gen mit Hilfe der Variationsprinzipien der Elastostatik,
Ingenieur-Archiv 29, 388 (1960).

6. C. Miehe, Zur numerischen Behandlung thermomecha-
nischer Prozesse. Forschungs- und Seminarberichte aus
dem Bereich der Mechanik der Universität (Institut
für Baumechanik und Numerische Mechanik, Hannover,
1988).

7. C.W. Bert, V. Birman, AIAA J. 37, 135 (1999).
8. C.W. Bert, C. Fu, J. Pressure Vessel Technol. 114, 189

(1992).
9. P. Wapperom, M.A. Hulsen, J. Rheol. 42, 999 (1998).

10. S. Glaser, Ph.D. thesis, Universität Stuttgart, 1992.
11. C. Gerthsen, H. Vogel, Physik, 17th edn. (Springer, 1993).
12. Ch. Weißmantel, C. Hamann, Grundlagen der Festköper-
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